How to install TensorFlow using pip in the TensorFlow installation manual

Regarding TensorFlow installation, there are many ways to practice. This article will give you a detailed introduction on how to install TensorFlow using pip.

Available installation packages

tensorflow — CPU-only current version (recommended for beginners)

tensorflow-gpu — the current version that supports GPU (Ubuntu and Windows)

tf-nightly —Nightly is built only for CPU (unstable)

tf-nightly-gpu — Use GPU to support Nightly (unstable, Ubuntu and Windows)

System Requirements

Ubuntu 16.04 or higher (64-bit)

macOS 10.12.6 (Sierra) or higher (64-bit) (no GPU support)

Windows 7 or higher (64-bit) (Python 3 only)

Raspbian 9.0 or higher

Hardware requirements

Starting from TensorFlow 1.6, binary files use AVX instructions, which may not run on older CPUs

Read the GPU support guide (https://tensorflow.google.cn/install/gpu?hl=zh-CN) and set up a GPU card that supports CUDA® on Ubuntu or Windows

Install the Python development environment on the system

Python 3

Check if your Python environment is configured:

Requires Python 3.4, 3.5 or 3.6

$ python3 --version$pip3 --version$virtualenv --version

If these packages are already installed, skip to the next step.

Otherwise, please install Python, pip package manager and Virtualenv:

UBUNTU

$sudo apt update$sudo apt install python3-dev python3-pip$sudo pip3 install -U virtualenv # system-wide install

MAC OS

Install using Homebrew package manager:

$/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"$export PATH="/usr/local/bin:/usr/local /sbin:$PATH"$brew update$brew install python # Python 3$sudo pip3 install -U virtualenv # system-wide install

WINDOWS

Install 2015 Redistributable Update 3. This is included with Visual Studio 2015 and can be installed separately:

Go to Visual Studio to download

Choose Redistributables and Build Tools

Download and install Microsoft Visual C++ 2015 Redistributable Update 3

Install the 64-bit Python 3 distribution for Windows (select pip as an optional feature)

C:\>pip3 install -U pip virtualenv

RASPBERRY PI

$sudo apt update$sudo apt install python3-dev python3-pip$sudo apt install libatlas-base-dev # required for numpy$sudo pip3 install -U virtualenv # system-wide install

OTHER

$curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py$python get-pip.py$sudo pip3 install -U virtualenv # system-wide install

Python 2.7

Check if your Python environment is configured:

$python --version$pip --version$virtualenv --version

If these packages are already installed, skip to the next step.

Otherwise, please install Python, pip package manager and Virtualenv:

UBUNTU

$sudo apt update$sudo apt install python-dev python-pip$sudo pip install -U virtualenv # system-wide install

MAC OS

Install using Homebrew package manager:

$/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"$export PATH="/usr/local/bin:/usr/local /sbin:$PATH"$brew update$brew install python@2 # Python 2$sudo pip install -U virtualenv # system-wide install

RASPBERRY PI

$sudo apt update$sudo apt install python-dev python-pip$sudo apt install libatlas-base-dev # required for numpy$sudo pip install -U virtualenv # system-wide install

OTHER

$curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py$python get-pip.py$sudo pip install -U virtualenv # system-wide install

Create a virtual environment (recommended)

The Python virtual environment is used to isolate the package installation from the system.

UBUNTU / MAC OS

Create a new virtual environment by selecting the Python interpreter and creating a ./venv directory:

$virtualenv --system-site-packages -p python2.7./venv

Activate the virtual environment using shell-specific commands:

$source ./venv/bin/activate # sh, bash, ksh, or zsh

When virtualenv is active, the shell prompt is prefixed with (venv).

To install the software package in a virtual environment without affecting the host system settings. First upgrade pip:

(Venv)$pip install --upgrade pip(venv)$pip list # show packages installed within the virtual environment

Then exit virtualenv:

(Venv)$deactivate # don't exit until you're done using TensorFlow

WINDOWS

Create a new virtual environment by selecting the Python interpreter and creating a ./venv directory.

Activate the virtual environment:

(Venv)C:\>.\venv\Scripts\activate

Installing the software package in the virtual environment will not affect the host system settings. First upgrade pip:

(Venv)C:\>pip install --upgrade pip(venv)C:\>pip list # show packages installed within the virtual environment

Then exit virtualenv:

(Venv) C:\> deactivate # don't exit until you're done using TensorFlow

CONDA

We recommend using the pip package provided by TensorFlow, or the Anaconda package supported by the community.

Create a new virtual environment by selecting the Python interpreter and creating a ./venv directory:

$conda create -nvenvpip python=2.7

Activate the virtual environment:

&source activatevenv

In the virtual environment, install the TensorFlow pip package using its full URL

(Venv)$pip install --ignore-installed --upgrade packageURL

Then exit virtualenv:

(Venv)$source deactivate

Install TensorFlow pip package

Choose one of the following TensorFlow packages from PyPI to install:

tensorflow—current version of CPU only (recommended for beginners)

tensorflow-gpu — the current version that supports GPU (Ubuntu and Windows)

tf-nightly— Nightly is built only for CPU (unstable)

tf-nightly-gpu — Use GPU to support Nightly (unstable, Ubuntu and Windows)

Package dependencies are installed automatically. All are listed in the setup.py file under REQUIRED_PACKAGES.

VIRTUALENV INSTALL

(Venv)$ pip install --upgrade tensorflow

Verify the installation:

(Venv)$python -c "import tensorflow as tf; print(tf.__version__)"

SYSTEM INSTALL

$ pip install --user --upgrade tensorflow # install in $HOME

Verify the installation:

$python -c "import tensorflow as tf; print(tf.__version__)"

Success: TensorFlow is now installed. Read the tutorial and get started. (Https://tensorflow.google.cn/tutorials/?hl=zh-CN)

Installation package location

Some installation mechanisms require the URL of the TensorFlow Python package. The value you specify depends on your Python version.

Version URL
Linux
Python 2.7 CPU-only https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.11.0-cp27-none-linux_x86_64.whl
Python 2.7 GPUsupport https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.11.0-cp27-none-linux_x86_64.whl
Python 3.4 CPU-only https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.11.0-cp34-cp34m-linux_x86_64.whl
Python 3.4 GPUsupport https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.11.0-cp34-cp34m-linux_x86_64.whl
Python 3.5 CPU-only https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.11.0-cp35-cp35m-linux_x86_64.whl
Python 3.5 GPUsupport https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.11.0-cp35-cp35m-linux_x86_64.whl
Python 3.6 CPU-only https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.11.0-cp36-cp36m-linux_x86_64.whl
Python 3.6 GPUsupport https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.11.0-cp36-cp36m-linux_x86_64.whl
macOS (CPU-only)
Python 2.7 https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.11.0-py2-none-any.whl
Python 3.4, 3.5, 3.6 https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.11.0-py3-none-any.whl
Windows
Python 3.5 CPU-only https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.11.0-cp35-cp35m-win_amd64.whl
Python 3.5 GPUsupport https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.11.0-cp35-cp35m-win_amd64.whl
Python 3.6 CPU-only https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.11.0-cp36-cp36m-win_amd64.whl
Python 3.6 GPUsupport https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-1.11.0-cp36-cp36m-win_amd64.whl

Fiber Optic Distribution Box

Fiber Optic Distribution Box,Fiber Optic Breakout Box,Fibre Optic Breakout Box,Fibre Break Out Box

Cixi Dani Plastic Products Co.,Ltd , https://www.danifiberoptic.com

Posted on